Rishabh Ranjan

🥔 858-405-1419 🖾 <u>riranjan@ucsd.edu</u> 🛅 linkedin.com/in/ranjan-rishabh 🌎 github.com/ranjan-rishabh

Education

University of California, San Diego

Doctor of Philosophy in Computer Science (Advised by Prof. Mihir Bellare)

University of California, San Diego

Masters of Science in Computer Science

Birla Institute of Technology, Mesra

Bachelors of Engineering in Computer Science and Engineering

Experience

Seagate Technology

Cryptography Research Intern

• Developed and analysed security of secure computation protocol based on Fully Homomorphic Encryption and Zero-Knowledge Proofs.

Microsoft

Software Engineer

- Designed and developed features for multiple Azure extensions as part of the Azure Storage team.
- Owner of multiple areas such as 'ordering' and 'virtual machines' in the Azure Stack Edge extension.
- Founding developer of the new Edge Ordering extension. Now generally available and being used by multiple teams in Azure and beyond.
- Automated deployment of microservices to ServiceFabric clusters saving developer time in each release cycle.
- Technologies: Node, Typescript/JavaScript, C#, ReactJS, KnockoutJS, Redux

Microsoft

 $Software\ Engineering\ Intern$

- Created a Visual Studio extension based on syntax parsing and compilation to provide real time warnings about accessibility violations in code. Received Pre-Placement Offer for this.
- Alleviated the need for accessibility testing as a stage in development and saved hundreds of developer hours.
- Technologies: C#, Managed Extensibility Framework, Roslyn (compiler platform for Visual Studio)

Publications

- Mihir Bellare, Rishabh Ranjan, Doreen Riepel, Ali Aldakheel (2024), The Concrete Security of Two-Party Computation: Simple Definitions, and Tight Proofs for PSI and OPRFs, Asiacrypt 2024.
- Paarth Neekhara, Shehzeen Hussain, Rafael Valle, Boris Ginsburg, Rishabh Ranjan, Shlomo Dubnov, Farinaz Koushanfar, Julian McAuley, *SelfVC: Voice Conversion With Iterative Refinement using Self Transformations*, **ICML 2024**.
- Rishabh Ranjan, Dr. Vathsala H, Dr Shashidhar G Koolagudi (2021), Profile Generation from Web Sources: An Information Extraction System, Soc. Netw. Anal. Min. (Springer) 12, 2 (2022).

Technical Skills

Languages: C, C++, Python, TypeScript, C#, SQL Frameworks: OpenFHE, Tensorflow, PyTorch, MPI Areas: Provable security, Multi-party computation, Post-quantum cryptography

Relevant Graduate Courses

Cryptography : Lattice Algorithms, Modern Cryptography, Applied Cryptography, Advanced Cryptography (FHE), Quantum Cryptography

Complexity theory : Computability and Complexity, Analysis of Algorithms, Semi-definite Programming **Systems** : Advanced Compiler Design, Parallel and Distributed Computing

Sep. 2021 – June 2026 3.97/4.0

Sep. 2021 – June 2023 3.97/4.0

July 2015 – June 2019 8.41/10

June 2024 – Sept 2024

July 2019 – Sep. 2021

Bangalore, India

Shakopee, MN

May 2018 – July 2018

Hyderabad, India

Verifiable Homomorphic Encryption using $CF13 \mid C++, MAC$

• Implemented the CF13 homomorphic MAC described in the paper titled, Practical Homomorphic MACs for Arithmetic *Circuits* by Dario Catalano and Dario Fiore (Eurocrypt, 2013).

Faster Matrix Multiplication | *CUDA*, *C++*, *GPU architecture*

- Optimization of large Matrix multiplication using CUDA on a Turing GPU
- The project utilized multi-threading along with instruction level parallelism to induce higher computational intensity.

Python to WebAssembly Compiler | WebAssembly, Typescript, Python, Compiler Optimizations

- Created a compiler as a group class project for compiling Python programs to WebAssembly which can be executed using Javascript on the browser.
- Worked on compiler optimizations such as constant folding and propagation, copy propagation, dead code elimination, hoisting using Worklist infrastructure, structured control flow using stackifier algorithm.

γ^2 -SVP to γ -HSVP reduction | Python, Lattices, Fplll

- Gave and implemented the γ^2 -Shortest vector problem (SVP) to γ -Hermite shortest vector problem in lattices. The idea of reduction is described in the paper An algorithmic theory of numbers, graphs and convexity. by Laszlo Lovasz.
- This project fills the gap in reduction and gives an implementation of the reduction.

Teaching Assistant

Projects

• CSE207a: Modern Cryptography	UCSD Winter 25
• CSE107: Introduction to Modern Cryptography	UCSD Spring 22, 23, Fall 22, Winter 23, Spring 24
• CSE101: Design and Analysis of Algorithms	$UCSD \mid Summer \ 22$
• CSE105: Theory of Computation	UCSD Fall 21

March 2023

October 2022

December 2021

May 2022